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1. Chapter: Introduction  
 
This document constitutes the final report of contract F30602-01-C-0192, Information Theoretic 

Based Performance Analysis of Distributed Sensor Network. All work performed by HRL 

Laboratories, LLC under this contract since the beginning of the contract (18 September 2001) is 

recounted herein. 

1.1. Contract Objectives: 
As part of the SensIT August 02 experiment at Twentynine Palms, CA, a time series database 

was created. This database consists of time-series data of seismic, acoustic and PIR sensors 

sensing various activities. Under the “Collaborative signal processing (CSIP)” part of the SensIT 

program, several detection, tracking and classification algorithms have been developed and have 

been tested using this data. However, there is a need for theoretical analysis of performance of 

these algorithms, to determine the lower and upper bound of accuracy of detection, tracking and 

classification. This will illustrate when to use which algorithms.  Therefore, in this study, we 

proposed to conduct such an analysis using information theoretic based or other value of 

information based metrics. For this analysis, we considered the SITEX 02 data. In particular, the 

main objectives of this study are as follows: 

1 Develop information theoretic based and other metrics, to assess the value of information 

obtained from different sensors on the same sensor node and from the neighboring nodes. 

2 Apply these metrics to assess the information obtained from the other sensors on the 

same node and/or from the neighboring nodes, and make a decision of when to or when 

not to fuse information. 

3 Analyze the detection and classification algorithms developed as part of the CSIP of the 

SensIT program, using SITEX 02 data and these metrics. 

These objectives were successfully met at the completion of this study and specific achievements 

of this study are listed in the next section. 
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1.2. Summary of achievements of this contract: 
1. Measures based on Euclidean distance, Correlation, Mutual information and relative entropy 

(Kullback-Liebler) were developed. 

2. An energy based detector and a maximum likelihood based classifier were considered. 

3. The above mentioned measures were used in assessing the value of information obtained 

from multiple sensors on the same node and from the neighboring nodes. The value of 

information was in terms of improvement in decision accuracy, which corresponds to 

detection or classification accuracy in the context of a detector or a classifier. If the 

information obtained from the other sensors of the same node or from the neighboring nodes 

did not improve the decision accuracy, then it was discounted.  Otherwise, it was fused with 

the existing information. 

4. The measures and the performance of the energy based detector and the maximum likelihood 

based classifier were evaluated using the SITEX02 data. 

5. The performance analysis included using (a) only one sensor on each node, with and without 

fusing information from the neighboring nodes, based on whether value was added or not, 

and with and without rejection capability; the performance without fusion corresponds to 

lower bound, (b) multiple sensors on each node, with and without fusing information from 

the other sensors, based on whether value was added or not and with and without the 

capability to reject the bad data, and (c) multiple sensors on each node, and the neighboring 

nodes with and without fusion and rejection capability; the performance with fusion of 

information from multiple sensors and the neighboring nodes when value is added and with 

the capability to reject the bad data corresponds to the upper bound.  

6. The experimental results indicated that by fusing information from multiple sensors on the 

same node and from the neighboring nodes, when value was added, and by having the 

capability to reject bad information, the average performance of both a detector and a 

classifier improved significantly, and the upper bound of close to 100 % decision accuracy 

can be obtained. 
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7. An invention disclosure based on this study has been submitted. Also a technical paper

was published in the proceedings of the Fusion’03 conference, held in Cairns, Australia

    from July 8-11, 2003

.   

1.3. Outline of this report: 
This final report is organized as follows: 

♦ In chapter 2, the details of measures of value of information that we have developed under 

this study, are provided. 

♦ In chapter 3, an energy based detector and a maximum likelihood based classifier that were 

considered in this study are briefly reviewed. 

♦ In chapter 4, a brief description of the data, the experimental details, and the results are 

provided. 

♦ In Chapter 5, we conclude and indicate the future directions. 

♦ In Appendix A, a copy of the technical paper that is being published based on this study is 

included. 
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2. Chapter: Measures of value of information 
A spatially distributed network of inexpensive, small and smart nodes with multiple onboard 

sensors is an important class of emerging networked systems for various defense and commercial 

applications. Since this network of sensors has to operate efficiently in adverse environments, 

using limited battery power and resources, it is important that these sensors process information 

efficiently and share information such that the decision accuracy is improved. In this paper, this 

is addressed by developing measures that assess the value of information obtained from multiple 

sensors on board a node and from the neighboring nodes, by conditioning it on improvement in 

the decision accuracy. If the information obtained from other sensor types on a node and/or from 

the neighboring nodes do improve the decision accuracy, then the information is fused. In our 

study, information is obtained in the form of features (for classification) or data (for detection). 

In [1-2], we developed a general information theoretic based metric that can be used in any kind 

of sensor selection and data fusion. However, while analyzing the real data with respect to a 

classifier and a detector, we observed that the correlation between the metric of value of 

information and the decision accuracy depends on the type of a classifier or a detector. Hence, 

we think that a mutual information metric may not always work. Therefore, we have developed 

several measures and studied them systematically with respect to one type of classifier and a 

detector. The mathematical details of these measures are provided in the following sections.  

2.1. Mutual Information 
Entropy is a measure of uncertainty. Let H(x) be the entropy of previously observed x events. Let 

y be a new event. We can measure the uncertainty of x after including y by using the conditional 

entropy which is defined as: 

    ( ) ( ) ( )yHyxHyxH −= ,     (2.1) 

with the property ( ) ( ).0 xHyxH ≤≤  The conditional entropy H(x|y) represents the amount of 

uncertainty remaining about x after y has been observed. If the uncertainty is reduced, then there 

is information gained by observing y. Therefore, we can measure the value of y by using 

conditional entropy. Another measure that is related to conditional entropy that one can use is 
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the mutual information I(x,y) which is a measure of uncertainty that is resolved  by observing y 

and is defined as:  

    I(x,y) = H (x) − H x y( ).     (2.2)  

To explain how this measure can be used to determine the value of information obtained from 

another sensor type, an example is provided below.  

2.1.1. An example of value of information using mutual information as a metric 
Let A = {ak} k = 1, 2,… be the set of features from sensor 1 and let B = {bl} l = 1, 2,… be the set 

of features from sensor 2 on the same node. Let p(ai) be the probability of feature ai. Let H(A), 

H(B) and H(A|B) be the entropy corresponding to sensor 1, sensor 2 and sensor 1 given sensor 2, 

respectively.They are defined as [3]:  

   ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
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Here, the entropy H(A) corresponds to the prior uncertainty and the conditional entropy H(A|B) 

corresponds to the amount of uncertainty remaining after observing features from sensor 2. The 

mutual information, that is defined as I(A, B) = H(A) – H(A|B), corresponds to uncertainty that is 

resolved by observing B; in other words, features from sensor 2. From the definition of mutual 

information, it can be seen that the uncertainty that is resolved basically depends on the 

conditional entropy. Let us consider two types of sensors. Let the set of features of these two 

sensors be B1 and B2, respectively.  If H(A|B1) < H(A|B2) then I(A, B1) > I(A, B2). This implies 

that the uncertainty is better resolved by observing B1 as compared to B2. This further implies 

that B1 corresponds to features from a good sensor that is consistent with the features from sensor 

1 and thus helps in improving the decision accuracy of sensor 1. B2 corresponds to features from 

a bad sensor that is inconsistent with sensor 1, and hence, B2 should not be considered. 

Note that even though in the above example only two sensor nodes are considered for simplicity, 

this measure or metric can be used in a network of more than two sensors. 
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2.2. Euclidean Distance 
Unlike mutual information, Euclidean distance does not evaluate the amount of information 

available from a second source. It does, however, measure the similarity between two feature 

sets in Euclidean space. This value can then be used to determine when to fuse two sources, 

whether from the same node or different nodes. A simple measure, Euclidean distance is defined 

as: 

     d = (ai − bi)
2

i
∑       (2.4) 

where ai, bi, and i are defined in Section 3.1.1. 

2.3. Correlation 
Correlation is also a well known measure of similarity. We use the standard measure of 

correlation as defined by: 

    ρ =
E a −µa( ) b − µb( )[ ]
E a −µa[ ]E b − µb[ ]

     (2.5) 

where µa and µb are the means of feature sets a and b, respectively. Note that correlation is very 

closely related to mutual information, I(x,y), because (3.2) can be rewritten as: 

   ( ) ( )
( ) ( )
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2.4. Relative Entropy – Kullback-Leibler Distance 
Finally, the Kullback-Liebler (KL) distance is derived from entropy, and again is a measure of 

the separation of two feature sets. It is defined as: 
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For example, to verify the discriminative power of different features that are used in the 

classifier, both acoustic and seismic data from SITEX02 was used for three vehicles – AAV, 

Dragon Wagon (DW) and HMMWV. The KL distance described above was computed for AAV 

versus DW, AAV versus HMMWV, and DW versus HMMWV.  In Figure 2.1, KL distance 

versus acoustic and seismic features are plotted for these three cases. In this Figure, the first 20 



 7

on the X-axis correspond to acoustic features and the second 20 (21-40) correspond to seismic 

features. From this Figure, it can be seen that the first 10 features of acoustic and the first 10 

features of seismic are most discriminative as compared to the last ten features, because they do 

not overlap. This indicates that they help in uniquely providing information between classes of 

targets.   

 

Figure 2.1 Discrimination power of individual features 
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3. Chapter: Review of Algorithms Used for Verification of Measures of 
Value of Information 

 
The above described metrics are used to measure the value of information obtained from other 

sources such as multiple sensors on a single node and from the neighboring nodes in the context 

of target detection and classification. For target detection, an energy based detector is used and 

for classification, the maximum likelihood based classifier is used. As mentioned before, the 

value of information is in terms of improvement in the decision accuracy, which corresponds to 

classification accuracy for a classifier, and detection accuracy or probability of detection for a 

detector. Note that in this study, we did not develop a classifier or a detector. Instead, those 

developed by others in the SensIT program  were used, since the goal of this study was to 

develop measures of value of information and to verify them by analyzing the detection and 

classification performances. In other words, the goal was to find the lower and upper bound on 

the performance of these algorithms. In the following two sections, we review the classifier and 

the detector that were used in this study.  

3.1. Maximum likelihood based classifier: 
The classifier we used for the verification of measures of value of information in terms of 

improving the decision accuracy is a maximum likelihood based classifier developed by the 

University of Wisconsin [4] as part of this SensIT program. For a given set of training features 

and target labels, a Gaussian mixture model was determined during the training phase of the 

classifier. During testing, the distance between the test feature vector and the ith class Gaussian 

mixture is computed. This corresponds to negative log likelihood. Then, a priori probability is 

used to obtain the maximum a posterior classification. The features  set that was used here 

consists of twenty features from the power spectral density. This was computed using a 1024 

FFT. The feature set was collected by summing up the values over equal length segments of the 

power spectrum. For the acoustic and seismic sensors, the maximum frequency used was 1000 

and 200 Hz, respectively. 
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3.2. Energy based detector: 
An energy based detector was also used for the verification of improvement in decision accuracy 

when the value of information based fusion architecture was used. This detector was developed 

by BAE, Austin [5]; also as part of the SensIT program. A brief description of this detector was 

provided below. 

For every block of a given signal, the energy of the down sampled version of the power spectral 

density was computed. For the computation of the power spectral density, a 1024 point FFT was 

used. This energy was compared with a threshold value. Whenever the energy was above the 

threshold, it was declared that the target was detected. The threshold value was adaptively 

changed based on the background energy. 
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4. Chapter: Experimental details 
 
The above described classifier and detector, measures of value of information, and the fusion 

algorithm, which uses these measures while deciding when to and when not to fuse information, 

were implemented in Matlab; a product of MathWorks. They were tested using real data that was 

collected by distributing sensor nodes along the east-west and north-south road at Twentynine 

Palms, CA, during one of the field tests (SITEX’02). These sensor nodes were manufactured by 

Sensoria. On each sensor node, three sensors - acoustic, seismic and IR, a four channel data 

acquisition board, and a processing board are available. These nodes also have communication 

capabilities. For more details on the sensor node, refer to [6].  

 

SITEX’02 data corresponds to acoustic, seismic, and IR data of three vehicles – AAV, Dragon 

Wagon (DW) and HMMWV, moving along the east-west and north-south road as shown in 

Figure 4.1. In this figure, nodes placements are also provided. In all twenty-four nodes out of 

sixty-nine nodes were considered in our experiments, because the data from the nodes that were 

not considered was not good; i.e., the sensors on these nodes did not operate as desired. Both 

seismic and acoustic data was used, from the nodes that were considered.  

 

Figure 4.1 Distribution of Sensor nodes at Twenty nine Palms, CA 
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In the next section, the classification experimental details and the results are provided. In section 

4.2, the detection experiments and the results are provided. In both of these sections the 

experimental details and results are provided with and without the value of information based 

fusion technique that was developed in this study. 

4.1. Classification Experiments 
First, acoustic data from each node is considered. The maximum likelihood classifier is trained 

using only acoustic data from individual nodes. The challenges in the classification experiments 

are threefold:  1) when to reject a source of data, 2) when to propagate data between sequential 

nodes, and 3) when to share individual sensor data within the same node. Using only acoustic 

data, we investigated the effectiveness of the four measures of value of information outlined in 

Chapter 2 - mutual information, Euclidean distance, correlation, and Kullback-Liebler distance. 

 

In addition, we investigated two methods of using these measures. When evaluating the 

effectiveness of fusing two sources of data, is it better to compare the two sources with each 

other or with the stored training data? To answer this question, we devised several similarity 

measures to measure the closeness of two data sources. We calculated these measures between 

data at all sequential nodes. Then, for each similarity measure, we computed its correlation with 

correct classification performance at each node. We call this the performance correlation. The 

average performance correlation over all the nodes for each class of data, using previous node 

similarity measures, is shown in Figures 4.2 and 4.3 for acoustic and seismic sensors, 

respectively. In these two figures, the numbering on the X-axis is artificial in that 1 corresponds 

to AAV, 2 corresponds to Dragon wagon, and 3 corresponds to HMMWV. 
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Figure 4.2: Performance (Pcc – classification probability) correlation with previous node for 
acoustic sensor 
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Figure 4.3: Performance (Pcc – classification probability) correlation with previous node for 
seismic sensor 

 

Next, we calculated the same similarity measures between the data at each node and the data 

stored in the training sets. Again, for each similarity measure, we computed its correlation with 

correct classification performance at each node.  
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Figure 4.4: Performance (Pcc – classification probability) correlation with training class data 
for acoustic sensor 

Furthermore, comparing Figures 4.2 and 4.4, shows that using the training set for similarity 

measures is more effective than using the data from the previous node in the network. We found 

this to be true in practice as well. Subsequent work with the seismic data echoed the findings of 

the acoustic data as evidenced by Figure 4.3. Note that even though we use the training data to 

make the fusion decision, we perform the actual data fusion with current and previous node data. 

 

4.1.1. Rejection of bad data: 
Sometimes, one node or one sensor can have bad data, in which case we prefer to reject this data 

rather than classify with poor results. We investigated one way of recognizing such sources of 

bad data, by observing outliers in each dimension of the 20-dimensional feature vectors. First, 
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compared to the mean for that dimension of the stored training sets. If the data contained an 
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rejecting the data, we did not fuse it with any other data, pass it on to any other node, nor even 

compute a classification at that source. Our method resulted in the rejection of several sources of 
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bad data, thus improving the overall classification results as shown in Figures 4.5 and 4.6. In 

these figures, the X-axis corresponds to the node number and the Y-axis corresponds to 

classification accuracy. Further, the blue plot corresponds to classification accuracy without 

fusing information from neighboring nodes, whereas the red plot corresponds to classification 

accuracy by fusing information, using the measures of value of information described before. 

From these figures, it can also be seen that by fusing information based on its value, the 

classification accuracy reaches close to 100 % asymptotically. 
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Figure 4.5: Performance of node fusion for the AAV with only acoustic sensor data 
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Figure 4.6: Performance of node fusion for the AAV with only seismic sensor data 

4.1.2. Node to node fusion: 
The fusion decision can be made with a threshold; i.e., if the distance between two feature sets is 

below some value, then fuse the two feature sets. The threshold value can be predetermined off-

line or adaptively. We sidesteped the threshold issue, however, by basing the fusion decision on 

relative distances. To do so, we initially assume the current node belonged to the same class (aka 

the target class) as the previous node and employ the following definitions. Let xn be the mean 

vector of the current node data. Let xnf be the mean vector of the fused data at the current node. 

Let xc1 be the mean vector of the target training class data. Let xc2, xc3 be the mean vectors of the 

remaining training classes. A Euclidean distance ratio is defined as: 

    rdist = dc1 /min(dc2,dc3) ,     (4.1) 

where dci is the Euclidean distance (3.4) between xn and xci. We then use the following pseudo-

code to make our fusion decisions. 

if (rdist <= 1.0) 

 fuse_4class = 1;    fuse_4carry = 1; 

 class_ind = classify xn; 
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 if (class_ind >= 70%)  check class_fuse; 

 end 

else 

 fuse_4class = 0;    fuse_4carry = 0; 

 if {(dc1 <= 3sc1 ) & (dc2 <= 3sc2 ) & (dc2 <= 3sc2 )} 

  class_ind = classify xn; 

  if (class_ind == target class)  fuse_4class = 1; 

   if (class_ind >= 70%) 

    fuse_4carry = 1; 

    class_fuse = classify xnf; 

if (class_ind > class_fuse) 

     class_fuse = class_ind; 

end 

   end 

  end 

 else 

  reject this data; 

 end 

end 

There are two outcomes to the fusion decision. First, we decide whether or not to fuse the data at 

the current node. If the current node has bad data, fusion can pull up the performance. We may 

not want to carry the bad data forward to the next node (the second fusion decision outcome). 

fuse_4class is a flag indicating whether or not to fuse for the current classification. fuse_4carry 

is a flag indicating whether or not to include data from the current node in the fused data that is 

carried forward. In Figures 4.5 and 4.6, we show the correct classification improvement gained 

by fusing from node to node for the acoustic and seismic sensors, respectively. For the acoustic 

sensor, we show the classification results from the AAV data, while using the DW data for the 

seismic sensor results. In the case of the acoustic data, the mean correct classification 

performance across all nodes increases from 70%, for independent operation, to 93%, with node 

to node fusion across the network. Similarly, the seismic correct classification performance 
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increases from 42% to 52%. However, the important thing to notice is the asymptotic increase in 

the classification accuracy from node to node, when the fusion is performed based on our 

measures of value of information. 

4.1.3. Fusion between sensors: 
After fusion from node to node of the individual sensors, we look at the benefit of fusing the 

acoustic and seismic sensor data at the same node. To do so, we employ the following 

definitions. Let rdist be defined as in equation (4.1), but with the new data types (a - acoustic, s - 

seismic, and as – a concatenated acoustic/seismic vector). Let xa be the mean vector of the 

current node acoustic data, after fusion from node to node. Let xs be the mean vector of the 

current node seismic data, after fusion from node to node. Let xas = xa, concatenated with xs 

(dumb fusion). Let xasf = smart fusion of xa with xs. Let xin be the data input to the classifier. 

Now, we employ two steps in the sensor fusion process as shown in the pseudocode below. 

First we employ a smart sensor fusion routine: 

indx = min(r_adist, r_sdist, r_asdist) 

if (indx == 1)  xin = xa; 

elseif (indx == 2)  xin = xs; 

elseif (indx == 3)  xin = xas; 

end 

Next, we employ a final fusion routine: 

class_acst = classify xa; 

class_seis = classify xs; 

class_as_dumb = classify xas; 

class_as_smart = classify xasf; 

if { (class_acst >= 70%) | (class_seis >= 70%) | (class_as_ind >= 70%) }  

 class_final_fuse = max (class_acst, class_seis,     class_as_dumb, class_as_smart)  

end 

 
The classification performance is averaged over all the nodes for each vehicle class. The correct 

classification performance improves at each stage of fusion processing as shown in Table 4.1. 
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The results indicate that the fusion based on value of information helps in improving the decision 

accuracy at each node significantly. 

 AAV DW HMMV 
Acoustic independent  

70 % 
 

58 % 
 

46% 
Seismic independent  

72% 
 

42 % 
 

24% 
Acoustic fusion  

93% 
 

80% 
 

69% 
Seismic fusion  

93% 
 

52% 
 

31% 
Acoustic & seismic, 
Independent 

 
76% 

 
55% 

 
58% 

Acoustic & seismic, 
With fusion 

 
95% 

 
90% 

 
77 % 

 

Table 4.1: Summary of classification performance 

Furthermore, we studied the implication of combination of fusion, with and without using 

measures of value of information and rejection capability in a systematic way, for each sensor 

type and for both sensors, by using four modes of operation which are described below. 

• Mode 1 corresponds to each node or sensor operating independently of the others (i.e., 

no fusion), without rejection capability. 

• Mode 2 corresponds to each node (single sensor on each node or multiple sensors on 

each node) propagating information from one node to the other; its usage dependent on 

our value of information measures, without rejection capability. 

• Mode 3 corresponds to each node operating independently (i.e., no fusion), with 

rejection capability. 

• Mode 4 corresponds to each node (single sensor or multiple sensors) propagating 

information from one node to the other; its usage based on our value of information 

measures, with rejection capability. 
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In the following tables, the correct classification performance for each vehicle – AAV, DW, and 

HMMWV is listed for each of the modes described above. The overall average classification 

performance that we can obtain by using both, value of information measures while fusing 

information and by rejecting bad data, is shown in Figure 4.7. From this Figure, it can be seen 

that the classification accuracy improves significantly and we can reach the upper bound of 

close to 100 % classification accuracy.  

 

Table 4.2: The classification performance under four different operations using only acoustic 
sensor 

 

Table 4.3: The classification performance under four different operations using only seismic 
sensor 

Acoustic Sensor Alone

Mode 1
Mode 2
Mode 3
Mode 4

70
90
74
95

AAV    DW    

58
73
76
96

46
69
49
77

Seismic Sensor Alone

Mode 
1 
Mode 
2 

72
89
81
95

AAV    DW    

42
44
61
66

24
33
30
44
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Table 4.4: The classification performance under four different operations by blindly fusing 
information (i.e., without using our value of information measures) between acoustic &  

seismic sensors, and from neighboring nodes 

 

Table 4.5: The classification performance under four different operations by fusing 
information smartly  (i.e.,  using our value of information measures) between acoustic &  

seismic sensors, and from neighboring nodes 

Acoustic and Seismic Blind Fusion 

Mode 1
Mode 2
Mode 3
Mode 4

76
93
80
97

AAV    DW    

55
64
74
87

58
71
42
63

Acoustic and Seismic Smart Fusion 

Mode 1 
Mode 2 
Mode 3 
Mode 4 

80
94
84
98

AAV    DW    

69
86
81
95

62
85
52
83
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Figure 4.7: The overall average classification accuracy for three vehicles under four modes 
using both measures of value of information and rejection of bad data while fusing 

information between sensors and from the neighboring nodes 

In the above figure, “prop” means propagation of information from one node to the other and 

“rej on/off” means rejection algorithm used or not used.  

In short, the overall observations of the analysis of the maximum likelihood based classifier, 

using our measures of value of information and our strategy for rejection of bad data, is as 

follows: 

1. Propagation always helps. 

2. For independent sensors, rejection always helps. 

3. Smart fusion always improves on blind fusion. 

4. Blind fusion is not always better than acoustic alone. 
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5. Smart fusion is always better than acoustic alone and blind fusion. 

6. Rejection is always better when using sensor fusion, except in the case of the HMMWV 

data. 

4.2. Detection experiments: 
For the detection experiments, both acoustic and seismic data were again considered. First, only 

acoustic data from individual nodes were used. A threshold value was initially set, which was 

varied adaptively based on the background energy. The power spectral density of acoustic data 

was computed using a 1024 point FFT and it was downsampled by 8. The energy of the 

downsampled version of the power spectral density was computed. This energy was compared 

with the threshold value. If the energy was above the threshold, it was decided that the target was 

detected. The time of detection and the confidence on detection were also calculated. The 

detection and time of detection were compared with the ground truth. If the target was detected 

when it was supposed to be, and if the time of detection was within the region of interest, then it 

was counted towards calculating the probability of detection. If the detection time was outside 

the region of interest (missed detection), and if a target was detected when it should not have 

been (false alarm), they were counted towards computing the probability of false alarm. The 

probabilities of detection and false alarm, using only acoustic data from individual nodes, 

without any fusion for AAV, DW and HMMWV were: 0.8824, 0.8677, 0.8382 & 0.1176, 

0.1323, 0.1618, respectively. Similarly, the probabilities of detection and false alarm, using only 

seismic data from individual nodes, without any fusion for AAV, DW and HMMWV were: 

0.8030, 0.7910, 0.5735 & 0.1970, 0.2090, 0.4265, respectively. 

 

Next, the mutual information based value of information measure was used on the energy of 

power spectral density to make a decision of fusing data between sensors - acoustic and seismic 

on each individual node. The detector was tested using the fused data on each node. The 

probability of detection and false alarm were computed as described above. The probabilities of 

detection of this intelligently fused data for AAV, DW and HMMWV were: 0.9394, 0.9105 and 

0.8529, respectively. The probabilities of false alarm is not provided here because it is equal to 1 

– probability of detection, since both false alarm and missed detections are combined together. 
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These results are summarized in Figure 4.8 in the form of a bar graph. From this, it can be seen 

that the intelligent sensor data fusion, based on value of information, significantly improves the 

detection accuracy. This type of fusion especially helps in difficult data as in the case of 

HMMWV. 

 

Figure 4.8: The performance of an energy based detector 

Detailed analysis similar to the classifier described above, lead to similar observations in the 

case of a detector. These two analyses, using real data, imply that the sensor/data fusion using 

value of information measures and rejection strategies significantly improve the decision 

accuracy. This would have a great impact on DoD applications, such as automatic target 

detection and recognition, surveillance, and situation awareness. In addition to improving the 

decision accuracy, this study provides a technique to efficiently manage and monitor sensors in a 

distributed network. This would have an impact in generating a single integrated picture that 

could be used in situation awareness applications. 
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5. Chapter: Summary and future directions 

5.1. Summary: 
In this final report, the work done by HRL Laboratories, LLC under the contract F30602-01-C-

0192 has been included. In short, this work has resulted in measures for value of information and 

application of these measures in making decisions on when to and when not to fuse information 

between different sensors types and information from the neighboring nodes, and when to reject 

bad data in a network of distributed sensors. In particular, the significant achievements of this 

work were as follows: 

• Measures based on Euclidean distance, Correlation, Mutual information and relative 

entropy (Kullback-Liebler) were developed (Chapter 2). 

• An energy based detector and a maximum likelihood based classifier were considered 

(Chapter 3). 

• The above mentioned measures were used in assessing the value of information obtained 

from multiple sensors on the same node and from the neighboring nodes. The value of 

information was in terms of improvement in decision accuracy, which corresponds to 

detection or classification accuracy in the context of a detector or a classifier. If the 

information obtained from the other sensors of the same node or from the neighboring 

nodes did not improve the decision accuracy then it was discounted. Otherwise, it was 

fused with the existing information (Chapter 4). 

• The measures and the performance of the energy based detector and the maximum 

likelihood based classifier were evaluated using the SITEX02 data (Chapter 4). 

• The performance analysis included using (a) only one sensor on each node with and 

without fusing information from the neighboring nodes, based on whether the value is 

added or not and with and without rejection capability; the performance without fusion 

corresponds to the lower bound, (b) multiple sensors on each node with and without 

fusing information from the other sensors, based on whether the value is added or not 

and with and without bad data rejection capability, and (c) multiple sensors on each node 

and the neighboring nodes with and without fusion and with and without the capability 
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to reject the bad data; the performance with fusion of information from multiple sensors 

and the neighboring nodes when values is added corresponds to the upper bound.  

• The experimental results indicated that by fusing information from multiple sensors on 

the same node and from the neighboring nodes when the value is added, the average 

performance of both a detector and a classifier improved significantly and the upper 

bound of close to 100 % decision accuracy can be obtained (Chapter 4). 

• An invention disclosure based on this study has been submitted. Also a technical paper 

was published in the proceedings of the Fusion’03 conference, held in Cairns, Australia 

from July 8-11, 2003.   

5.2. Future work: 
The measures of value of information developed under this study can be used for fusion for 

different types of sensors. We have submitted a proposal in response to DARPA/DSO’s BAA on 

time-reversal methods, in which we have proposed to use the measures of value of information 

in fusing images obtained from different looks of distributed multi-static millimeter wave radar 

sensors to generate a 3D map or image for an enhanced see through the wall surveillance 

application. If we win this contract, we will further develop these measures. We have also been 

using these measures in a company funded project to develop techniques for distributed fusion. 

In this project, visualization and network aspects are also addressed. The final goal of this 

project is to generate an enhanced single integrated picture for a situational awareness 

application. We will explore applying value of information measures to develop higher level 

fusion such as perception and cognition level fusion techniques. We will also explore the 

application of these measures or related measures for sensor or resource selection and 

management under this project. We believe that this DARPA contract has resulted in the 

powerful concept of “value of information”, which could be used in many different applications 

and also has resulted in an analysis strategy which could be used to assess the performance of 

several decision making algorithms. 
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Abstract - Spatially distributed network of 
inexpensive, small and smart nodes with multiple 
onboard sensors is an important class of emerging 
networked systems for various applications. Since this 
network of sensors has to operate efficiently in 
adverse environments, it is important that these 
sensors process information efficiently and share 
information such that the decision accuracy is 
improved. One way to address this problem is to 
measure the value of information obtained from 
multiple sensors on the same sensor node as well as 
from the neighboring nodes and fuse that information 
if value is added in terms of improvement in decision 
accuracy. In this paper, the measures that are 
developed for assessing the value of information are 
described. These measures are then used in making a 
decision of fusing either features or data from 
multiple sensors and neighboring nodes. While 
making this decision whether the value is added by 
fusing the information, is verified by conditioning it 
on improving the decision accuracy. The measures 
and value added are verified by using real data 
collected at Twentynine Plams, CA, USA and in the 
context of target detection and classification. From 
the results of improvement in classification accuracy 
and probability of detection reported in this paper, it 
can be seen that the utilization of measure of value of 
information while fusing helps in improving the 
decision accuracy significantly. 

Keywords: Value of information, measures of value, 
mutual information, decision accuracy, sensor/data 
fusion. 

1 Introduction 

Spatially distributed network of inexpensive, small 
and smart nodes with multiple onboard sensors is an 
important class of emerging networked systems for 
various defense and commercial applications. Since 
this network of sensors has to operate efficiently in 

adverse environments using limited battery power and 
resources, it is important that these sensors process 
information efficiently and share information such 
that the decision accuracy is improved. In this paper, 
this is addressed by developing measures that assess 
the value of information obtained from multiple 
sensors on board on a node and from the neighboring 
nodes by conditioning it on improvement in the 
decision accuracy. If the information obtained from 
other sensor types on a node and/or from the 
neighboring nodes do improve the decision accuracy 
then the information is fused. In our study, 
information is obtained in the form of features (for 
classification) or data (for detection). In [1-2] we 
have developed a general information theoretic based 
metric that can be used in any kind of sensor selection 
and data fusion. However, while analyzing the real 
data with respect to a classifier and a detector we 
observed that the correlation between the metric of 
value of information and the decision accuracy 
depend on the type of a classifier or a detector. 
Hence, we think that mutual information metric may 
not work always. Therefore, in this paper, we have 
developed several measures and studied them 
systematically with respect to one type of classifier 
and a detector.  

To our knowledge this value of information based 
fusion is not studied by others and is the significant 
contribution of this paper.  In [3], the author shows 
that in general by fusing data from selective sensors 
the performance of a network of sensors can be 
improved. However, this study does not describe 
specific novel measures for value of information and 
data fusion based on the assessed value unlike in this 
paper. In [4], techniques to represent Kalman filter 
state estimates in the form of information – Fisher 
and Shannon entropy are provided. In such a 
representation it is straightforward to separate out 
what is new information from what is either prior 
knowledge or common information. This separation 
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procedure is used in decentralized data fusion 
algorithms that are described in [5]. This is different 
from our paper in that we have developed measures 
for value of information and perform sensor/data 
fusion if the added value is in terms of improving the 
decision accuracy. The rest of the paper is organized 
as follows: In the next section details of measures that 
we have developed are described. Section 3 provides 
a brief description of the classifier and the detector 
that we have used in our study for the purposes of 
verification of the measures and data/sensor fusion. 
Section 4 provides the details of real data that we use 
in this study, the experimental setup and results. In 
section 5, we conclude and provide future research 
directions. 

2 Measures of value of information 

This section describes the measures of value of 
information that we have developed. Even though the 
mathematics of the metrics described below are not 
novel, the usage of metrics in the context of verifying 
value of information with respect to improving the 
decision accuracy (e.g., classification accuracy, 
detection accuracy) is new. 

2.1 Mutual information: 

Entropy is a measure of uncertainty. Let H(x) be the 
entropy of previously observed x events. Let y be a 
new event. We can measure the uncertainty of x after 
including y by using the conditional entropy which is 
defined as: 

( ) ( ) ( )yHyxHyxH −= ,         (1) 

with the property ( ) ( ).0 xHyxH ≤≤ The 
conditional entropy H(x|y) represents the amount of 
uncertainty remaining about x after y has been 
observed. If the uncertainty is reduced then there is 
information gained by observing y. Therefore, we can 
measure the value of y by using conditional entropy. 
Another measure that is related to conditional entropy 
that one can use is the mutual information I(x,y) 
which is a measure of uncertainty that is resolved  by 
observing y and is defined as:  

I(x,y) = H (x) − H x y( ).         (2)  

To explain how this measure can be used to measure 
value of information obtained from another sensor 
type an example is provided below.  

2.1.1 An example of value of information 
using mutual information as a metric 

Let A = {ak} k = 1, 2,… be the set of features from 
sensor 1 and let B = {bl} l = 1, 2,… be the set of 
features from sensor 2 on the same node. Let p(ai) be 
the probability of feature ai. Let H(A), H(B) and 
H(A|B) be the entropy corresponding to sensor 1, 
sensor 2 and sensor 1 given sensor 2, respectively, and 
they are defined as [6]:  

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
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Here, H(A) the entropy corresponds to the prior 
uncertainty and H(A|B) the conditional entropy 
corresponds to the amount of uncertainty remaining 
after observing features from sensor 2. The mutual 
information that is defined as I(A, B) = H(A) – H(A|B) 
corresponds to uncertainty that is resolved by 
observing B in other words features from sensor 2. 
From the definition of mutual information, it can be 
seen that the uncertainty that is resolved basically 
depends on the conditional entropy. Let us consider 
two types of sensors. Let the set of features of these 
two sensors be B1 and B2, respectively.  If H(A|B1) < 
H(A|B2) then I(A, B1) > I(A, B2). This implies that the 
uncertainty is better resolved by observing B1 as 
compared to B2. This further implies that B1 

corresponds to features from a good sensor that is 
consistent with the features from sensor 1 and thus 
helps in improving the decision accuracy of sensor 1 
and B2 corresponds to features from a bad sensor that 
is inconsistent with sensor 1 and hence, B2 should not 
be considered. 
 
Note that even though in the above example only two 
sensor nodes are considered for simplicity, this 
measure or metric can be used in a network of more 
than two sensors. 
 
2.2 Euclidean Distance 
Unlike mutual information, Euclidean distance does 
not evaluate the amount of information available from 
a second source. It does, however, measure the 
similarity between two feature sets in Euclidean 
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space. This value can then be used to determine when 
to fuse two sources, whether from the same node or 
different nodes. A simple measure, Euclidean distance 
is defined as: 

d = (ai − bi)
2

i
∑          (4)  

where ai, bi, and i are defined in Section 2.1.1. 
 
2.3 Correlation 
Correlation is also a well known measure of 
similarity. We use the standard measure of correlation 
as defined by: 

ρ =
E a −µa( ) b − µb( )[ ]
E a −µa[ ]E b − µb[ ]

         (5)  

where µa and µb are the means of feature sets a and b, 
respectively. Note that correlation is very closely 
related to mutual information, I(x,y) because (2) can 
be rewritten as: 

I ( x , y ) = p a k , bk( )
k

∑ log
p a k , bk( )

p a k( ) p b k( )
 

 
  

 

 
  

.         (6)  

 
2.4 Kullback-Liebler Distance 
Finally, the Kullback-Liebler (KL) distance is derived 
from entropy, and again is a measure of the separation 
of two feature sets. It is defined as: 
 
D = p a k( )

k
∑ log
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p b k( )
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3 Review of Algorithms used for verification 

The above described metrics are used to measure the 
value of information obtained from other sources such 
as multiple sensors on a single node and from the 
neighboring nodes in the context of target detection 
and classification. For target detection, energy based 
detector was used and for classification, maximum 
likelihood based classifier was used. As mentioned 
before the value of information is in terms of 
improvement in the decision accuracy which 
corresponds to classification accuracy for a classifier 
and detection accuracy or probability of detection for 
a detector. Note that in this study, we did not develop 
a classifier or a detector; however, used those 
developed by others since the goal of this study is to 
develop measures of value of information and verify 
them in terms of improvement in decision accuracy 

when they were used to make a decision of whether to 
fuse information obtained from the other source or 
not. In the following two sections we review the 
classifier and the detector that were used in this study.  

3.1 Maximum likelihood based classifier 
The classifier we used for the verification of measures 
of value of information in terms of improving the 
decision accuracy is a maximum likelihood based 
classifier developed by the University of Wisconsin 
[7] as part of DARPA’s sensor information 
technology (SensIT) program. For a given training 
features and target labels a Gaussian mixture model is 
determined during the training phase of the classifier. 
During testing the distance between the test feature 
vector and ith class Gaussian mixture is computed. 
This corresponds to negative log likelihood. Then a 
priori probability is used to obtain the maximum a 
posterior classification. The features’ set that is used 
here consists of twenty features from the power 
spectral density. This is computed using 1024 FFT. 
The feature set is collected by summing up the values 
over equal length segments of the power spectrum. 
For the acoustic and seismic sensors the maximum 
frequency used was 1000 and 200 Hz, respectively. 
 
3.2 Energy based detector 
An energy based detector is also used for the 
verification of improvement in decision accuracy 
when the value of information based fusion 
architecture is used. This detector is developed by 
BAE, Austin [8]; also as part of the SensIT program. 
A brief description of this detector is provided below. 
 
For every block of a given signal the energy of the 
down sampled version of the power spectral density is 
computed. For the computation of the power spectral 
density, 1024 point FFT is used. This energy is 
compared with a threshold value. Whenever the 
energy is above the threshold it was declared that the 
target was detected. The threshold value is adaptively 
changed based on the background energy.  

4 Experimental details 
The above described classifier and detector, and 
measures of value of information and the fusion 
algorithm which uses these measures while deciding 
when to and when not to fuse information were 
implemented in Matlab, a product of MathWorks and 
were tested using real data that was collected by 
distributing sensor nodes along east-west and south-
north road at Twentynine Palms, CA during one of the 
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field tests (SITEX’02). These sensor nodes are 
manufactured by Sensoria. On each sensor node, three 
sensors - acoustic, seismic and IR sensors, a four 
channel data acquisition board and a processing board 
are available. These nodes also have 
communication capabilities. For more details on 
the sensor node, refer to [9].  
 
SITEX’02 data corresponds to acoustic, seismic and 
IR data of three vehicles – AAV, Dragon Wagon 
(DW) and HMMWV moving along the east-west and 
north-south road as shown in Figure 1. In this figure, 
nodes placements are also provided. Totally twenty 
four nodes were considered in our experiments. We 
used both seismic and acoustic data from these nodes. 
In the next section, the classification experimental 
details and the results are provided and in section 4.2 
the detection experiments and the results are provided. 
In both these sections experimental details and results 
are provided with and without value of information 
based fusion technique that was developed in this 
study. 
 
4.1 Classification experiments 
First, acoustic data from each node is considered. The 
maximum likelihood classifier is trained using only 
acoustic data from individual nodes. The challenges in 
the classification experiments are threefold:  1) when 
to reject a source of data, 2) when to propagate data 
between sequential nodes, and 3) when to share 
individual sensor data within the same node. Using 
only acoustic data, we investigated the effectiveness 
of the four measures of value of information outlined 
in Section 2 - mutual information, Euclidean distance, 
correlation, and Kullback-Liebler distance. 
 
In addition, we investigated two methods of using 
these measures. When evaluating the effectiveness of 
fusing two sources of data, is it better to compare the 
two sources with each other or with the stored training 
data? To answer this question, we devised several 
similarity measures to measure the closeness of two 
data sources. We calculated these measures between 
data at all sequential nodes. Then for each similarity 
measure, we computed its correlation with correct 
classification performance at each node. We call this 
the performance correlation. The average performance 
correlation over all nodes for each class of data using 
previous node similarity measures is shown in Figure 
2. Next, we claculated the same similarity measures 
between the data at each node and the data stored in 

the training sets. Again, for each similarity measure, 
we computed its correlation with correct classification 
performance at each node.  
 
The average performance correlation over all nodes 
for each class of data using training set similarity 
measures is shown in Figure 3. Inspection of Figures 2 
and 3 show that the similarity measures Euclidean 
distance and correlation are more closely aligned with 
correct classification performance than either mutual 
information or Kullback-Liebler distance.  In practice, 
however, we found that the Euclidean distance 
outperformed correlation as the determining factor in 
fusion decisions. Furthermore, comparing Figures 2 
and 3 shows that using the training set for similarity 
measures is more effective than using the data from 
the previous node in the network. We found this to be 
true in practice as well. Subsequent work with the 
seismic data echoed the findings of the acoustic data. 
Note that even though we use the training data to 
make the fusion decision, we perform the actual data 
fusion with current and previous node data. 

4.1.1 Rejection of bad data 
Sometimes one node or one sensor can have bad data, 
in which case we prefer to reject this data rather than 
classify with poor results. We investigated one way of 
recognizing such sources of bad data, by observing 
outliers in each dimension of the 20-dimensional 
feature vectors. First we computed the mean of the 
data at the node in question. The value at each 
dimension was then compared to the mean for that 
dimension of the stored training sets. If the data 
contained an outlier in 4 or more of the dimensions, 
for each of the training classes, we rejected the data. 
By rejecting the data, we did not fuse it with any other 
data, pass it on to any other node, nor even compute a 
classification at that source. Our method resulted in 
the rejection of several sources of bad data, thus 
improving the overall classification results as shown 
in Figures 4 and 5. 

4.1.2 Node to node fusion 
The fusion decision can be made with a threshold, i.e. 
if the distance between two features sets is below 
some value, then fuse the two feature sets. The 
threshold value can be predetermined off-line or 
adaptive. We sidestep the threshold issue, however, by 
basing the fusion decision on relative distances. To do 
so, we initially assume the current node belonged to 
the same class (aka the target class) as the previous 
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node and employ the following definitions. Let xn be 
the mean vector of the current node data. Let xnf be the 
mean vector of the fused data at the current node. Let 
xc1 be the mean vector of the target training class data. 
Let xc2, xc3 be the mean vectors of the remaining 
training classes. A Euclidean distance ratio is defined 
as: 

rdist = dc1 /min(dc2 ,dc3) ,         (7)  

where dci is the Euclidean distance (4) between xn and 
xci. We then use the following pseudocode to make our 
fusion decisions. 
 
 
 
if (rdist <= 1.0) 
 fuse_4class = 1;    fuse_4carry = 1; 
 class_ind = classify xn; 

 if (class_ind >= 70%)  check class_fuse; 
 end 
else 
 fuse_4class = 0;    fuse_4carry = 0; 
 if {(dc1 <= 3sc1 ) & (dc2 <= 3sc2 ) & (dc2 <= 3sc2 )} 
  class_ind = classify xn; 

  if (class_ind == target class)  fuse_4class = 1; 
   if (class_ind >= 70%) 
    fuse_4carry = 1; 
    class_fuse = classify xnf; 

if (class_ind > class_fuse) 
     class_fuse = class_ind; 

end 
   end 
  end 
 else 
  reject this data; 
 end 
end 
 
There are two outcomes to the fusion decision. First 
we decide whether or not to fuse the data at the 
current node. If the current node has bad data, fusion 
can pull up the performance, however, we may not 
want to carry the bad data forward to the next node 
(the second fusion decision outcome). fuse_4class is a 
flag indicating whether or not to fuse for the current 
classification. fuse_4carry is a flag indicating whether 
or not to include data from the current node in the 
fused data that is carried forward. In Figures 4 and 5 
we show the correct classification improvement 
gained by fusing from node to node for the acoustic 
and seismic sensors, respectively. For the acoustic 
sensor we show classification results from the AAV 

data, while using DW data for the seismic sensor 
results. In the case of the acoustic data, the mean 
correct classification performance across all nodes 
increases from 70% for independent operation to 93% 
with node to node fusion across the network. 
Similarly, the seismic correct classification 
performance increases from 42% to 52%. 

4.1.3 Fusion between sensors 
After fusion from node to node of the individual 
sensors, we look at the benefit of fusing the acoustic 
and seismic sensor data at the same node. To do so, 
we employ the following definitions. Let rdist be 
defined as in (7) but with the new data types (a - 
acoustic, s - seismic, and as – a concatenated 
acoustic/seismic vector). Let xa be the mean vector of 
the current node acoustic data after fusion from node 
to node. Let xs be the mean vector of the current node 
seismic data after fusion from node to node. Let xas = 
xa concatenated with xs (dumb fusion). Let xasf = smart 
fusion of xa with xs. Let xin be the data input to the 
classifier. Now, we employ two steps in the sensor 
fusion process as shown in the pseudocode below. 
First we employ a smart sensor fusion routine: 
 
indx = min(r_adist, r_sdist, r_asdist) 
if (indx == 1)  xin = xa; 
elseif (indx == 2)  xin = xs; 
elseif (indx == 3)  xin = xas; 
end 
 
Next, we employ a final fusion routine: 
 
class_acst = classify xa; 
class_seis = classify xs; 
class_as_dumb = classify xas; 
class_as_smart = classify xasf; 
if { (class_acst >= 70%) | (class_seis >= 70%) | 
(class_as_ind >= 70%) }  
 class_final_fuse = max (class_acst, class_seis,     
class_as_dumb, class_as_smart)  
end 
 
Figure 6 shows the results of fusion at each stage. The 
classification performance is averaged over all the 
nodes for each vehicle class. The correct classification 
performance improves at each stage of fusion 
processing as shown in Table 1. The results indicate 
that the fusion based on value of information helps in 
improving the decision accuracy at each node 
significantly. 
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 AAV DW HMMV 
acoustic 
independent 

 
70 % 

 
58 % 

 
46% 

seismic 
independent 

 
72% 

 
42 % 

 
24% 

Acoustic 
fusion 

 
93% 

 
80% 

 
69% 

seismic 
fusion 

 
93% 

 
52% 

 
31% 

acoustic and 
seismic, 
independent 

 
76% 

 
55% 

 
58% 

acoustic and 
seismic, 
with fusion 

 
95% 

 
90% 

 
77 % 

Table 1: Summary of classification performance 
 
4.2 Detection experiments 
For the detection experiments also both acoustic and 
seismic data were considered. First, only acoustic data 
from individual nodes were used. A threshold value 
was initially set which was varied adaptively based on 
the background energy. The power spectral density of 
acoustic data was computed using 1024 point FFT and 
it was downsampled by 8. The energy of the 
downsampled version of the power spectral density 
was computed. This energy was compared with the 
threshold value. If the energy was above the threshold 
value, it was decided that the target was detected. The 
time of detection and the confidence on detection 
were also calculated. The detection and time of 
detection were compared with the ground truth. If the 
target was detected when it is supposed to be and if 
the time of detection is within the region of interest 
then it was counted towards calculating the probability 
of detection. If the detection time is outside the region 
of interest (missed detection) and if a target was 
detected when it should not have been (false alarm) it 
was counted towards computing the probability of 
false alarm. The probability of detection and false 
alarm using only acoustic data from individual nodes 
without any fusion for AAV, DW and HMMWV are: 
0.8824, 0.8677, 0.8382 & 0.1176, 0.1323, 0.1618, 
respectively. Similarly, the probability of detection 
and false alarm using only seismic data from 
individual nodes without any fusion for AAV, DW 
and HMMWV are: 0.8030, 0.7910, 0.5735 & 0.1970, 
0.2090, 0.4265, respectively. 
 
Next, the mutual information based value of 
information measure was used on the energy of power 

spectral density to make a decision of fusing data 
between sensors - acoustic and seismic on each 
individual node. The detector was tested using the 
fused data on each node. The probability of detection 
and false alarm were computed as described above. 
The probability of detection of this intelligently fused 
data for AAV, DW and HMMWV is: 0.9394, 0.9105 
and 0.8529, respectively. The probability of false 
alarm is not provided here because it is equal to 1 – 
probability of detection since both false alarm and 
missed detections are combined together. These 
results are summarized in Figure 7 in the form of a bar 
graph. From this, it can be seen that the intelligent 
sensor data fusion based on value of information 
significantly improves the detection accuracy. This 
type of fusion especially helps in difficult data as in 
the case of HMMWV. 

5 Conclusions 
In this paper, we developed measures for value of 
information and we used these measures to make a 
decision of when to fuse information from 
neighboring nodes and between sensors. In the case of 
a detector we used this measure in the case of fusing 
data between sensors at present. In the future, we will 
also use these measures to make a decision of fusing 
information from neighboring nodes. In the case of 
classification, we have demonstrated that using these 
measures while fusing data between sensors and from 
neighboring nodes improve the classification accuracy 
significantly. However, our rejection algorithm is not 
robust at present.  Our future work focuses on 
improving this algorithm. Our future work also 
focuses on further studying the mutual information 
based measure while fusing data between sensors and 
from node to node. In short, our results indicate that 
fusion based on value of information improves the 
decision accuracy – classification accuracy and 
probability of detection significantly. 
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Figure 1: Sensor node distribution at Twenty nine 
Palms, CA 

 
 
 

 
 
 
 

 
Figure 2: Performance correlation of previous node            

data             
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Performance correlation of training class 
data 
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Figure 4: Performance of node fusion for the AAV 

with acoustic sensor data 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 5: Performance of node fusion for the DW with  

seismic sensor data 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 6: Average correct classification performance 

at each step in the fusion process 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

Figure 7: Performance of a detector 
 

 

 

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

Pcc independent
Pcc w/ node fusion

0 5 10 15 20 25
10

20

30

40

50

60

70

80

90

100

Pcc independent
Pcc w/ node fusion

 

35




